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Abstract
We deal with the motion of a charged particle in a constant magnetic field
when immersed in a medium that exerts some type of friction. We analyse the
problem classically and also quantum mechanically. In the latter case we use
coherent state solutions of the problem that, for large energies, compared with
the one associated with the cyclotron frequency, reduce to the classical limit.
To study the dynamical behaviour we use time-dependent wave packets that
can be constructed by superposition of the coherent states.

PACS numbers: 03.65.−w, 02.30.−f

1. Introduction

In recent publications we have been interested in understanding dissipation effects in simple
systems, both classically and quantum mechanically [1]. There are different ways of taking the
dissipative interaction with an environment into account. The traditional system-plus-reservoir
approach couples the relevant system to a large number of environmental degrees of freedom,
represented, e.g., by harmonic oscillators [2]. However, this has the disadvantage—from a
computational point of view—that a system of many coupled differential equations has to
be solved due to the large number of degrees of freedom of the reservoir. The number of
degrees of freedom can be drastically reduced if an effective description of the interaction
between system and reservoir is applied. On the quantum-mechanical level, the effect of the
environment can be included, e.g., by the use of explicitly time-dependent Hamiltonians [3]
or nonlinear additions to the Schrödinger equation [4, 5]. An advantage of the former method
is the preservation of the canonical formalism and the linearity of the theory as well as the
fact that its operators can be derived directly from the system-plus-reservoir approach [6].
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The physical equivalence between this approach and one of the above-mentioned nonlinear
Schrödinger equations (with logarithmic nonlinearity) has been shown in [7]. Since in this
paper we want to study the influence of dissipative frictional forces on the classical as well
as on the quantum-mechanical level, we concentrate here on the canonical formalism using
time-dependent Hamiltonians.

A problem of this type is the motion of a charged particle in a constant magnetic field
when immersed in a medium that exerts some friction. We shall start with the classical analysis
of the problem without dissipation and then introduce the friction term. That the dissipative
magnetic field problem is already non-trivial on the classical level can be seen, e.g., from the
discussions in [8]. The situation becomes even more problematic on the quantum-mechanical
level when, particularly, the above-mentioned time-dependent Hamiltonian is used (see e.g.,
Wagner’s criticism [9] of such approaches [10]). The crucial point is that in these cases the
friction contribution in the corresponding equations of motion contains a term that explicitly
depends on the vector potential A, thus, causing rejection of this method [9] on physical
grounds. We will show how this serious shortcoming can be eliminated and a consistent
description of the dissipative case can be reached, also when a magnetic field is present.

Once we have our classical results we turn to the quantum problem, first without friction,
but analysing it in terms of coherent states so that we have a solution corresponding to the
classical one, and then we see, from the friction effect in the classical problem, what we can
expect for the quantum-mechanical one.

Finally, we solve the dynamical quantum problem, without and with dissipation, by
constructing time-dependent Gaussian wave packets as a superposition of the coherent
states showing that their behaviour agrees with the aforementioned classical and quantum-
mechanical results.

2. The classical problem without dissipation

The Lagrangian for the problem of a particle in a constant magnetic field is [11]

L = m′

2
v′2 +

e

c
v′ · A′ − V (r) (1)

where

A′ = 1
2 (B′ × r′) (2)

and we indicate all observables in cgs units by primes, so as to reserve the unprimed letters
for the corresponding observables in atomic units which will be used throughout this paper.
Bold-face quantities denote vectors. Thus v′ stands for the velocity of the particle and B′ for
the intensity of the magnetic field, both in terms of cgs units.

The relation between cgs and atomic units for all relevant observables is given by the
following equations

r = me2

h̄2 r′ p = h̄

me2
p′ B = h̄4

m2e5
B′ (3)

v = h̄

e2
v′ t = me4

h̄3 t ′ E = h̄2

me4
E′ (4)

where m, e are respectively the mass and charge of the particle. If the particle is an electron,
relations (3) and (4) give the usual definition of atomic units [12] but then can be extended to
any particle if we use units in which m = e = h̄ = 1.
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The Lagrangian of equation (1), in the energy units indicated in equation (4), then becomes

L = 1
2

(
ẋ2

1 + ẋ2
2

)
+ b(x1ẋ2 − x2ẋ1) − V (r) (5)

where we assumed that the direction of the magnetic field is that of x3 and

b = 1

2

h̄3B ′

m2e3c
(6)

while the dots indicate derivations with respect to the time t. The motion in the x3 direction
will be that of a free particle so we have suppressed the term

(
ẋ2

3

/
2
)

in the Lagrangian of
equation (5).

The Euler–Lagrange equations of motion [13] are then given by

d

dt

∂L

∂ẋi

− ∂L

∂xi

= 0 i = 1, 2 (7)

and for the L of equation (5), without external potential V (r), they become

ẍ1 − 2bẋ2 = 0 ẍ2 + 2bẋ1 = 0. (8)

We solve them by replacing the Cartesian x1, x2 by the circular ones x±
x± ≡ 1√

2
(x1 ± ix2) (9)

for which equations (8) take the form
d

dt
(ẋ± ± i2bx±) = 0. (10)

This means that the expression inside the brackets is a time-independent constant which
we denote by ± i2bx0± and so we get

ẋ± ± i(2bx±) = ±i2bx0± (11)

which is an inhomogeneous first-order linear equation whose solution is given by

x± = A± exp[−(±2ib)t] + x0± (12)

where A± is a time-independent constant. As x± = x∗
∓, where the star stands for complex

conjugation, we require that A± = A∗
∓, but otherwise it is an arbitrary complex number.

The difference x± − x0± can now be expressed in terms of polar coordinates by the
definition

x± − x0± = r exp(±iϕ) (13)

which from equation (12) leads to the relation
1√
2
r e±iϕ = A± exp[(∓2ib)t] (14)

and implies that
1
2 r2 = A+A− ≡ r2

0 ϕ = −2bt (15)

so the motion is in a circle of radius r0 with an angular velocity ϕ̇ = −2b.
The velocity of the particle in its circular orbit is r0ϕ̇ = (−2b)r0 so that the energy, in our

units where the mass is 1, becomes
1
2 (r0ϕ̇)2 = 2b2r2

0 ≡ E0. (16)

The motion of our particle in the (x1, x2) plane is given by circles whose centre point x0±
is arbitrary but the radius squared is

r2
0 = E0/2b2 (17)

with E0 being the constant energy of the particle and 2b the absolute value of the angular
velocity.
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3. The classical problem with dissipation

The simplest way to introduce dissipation is by adding to the Newtonian-type equations of
motion (8) a term that is proportional to the velocity. But we have shown before [1] that the
desired equations of motion (without magnetic field) can also be obtained along the lines of
a modified Hamiltonian formalism, also having the advantage that the Hamiltonian function
allows canonical quantization. In the following, a brief outline of this method will be given
and the modifications, due to the presence of a magnetic field, will be specified.

Dissipative systems with linear velocity dependent frictional forces cannot be described in
the usual Hamiltonian formalism in terms of the physical position variables xi and momentum
variables pi of the system alone (without environmental degrees of freedom). However, it
is possible to change from the physical variables to a set of so-called canonical variables,
denoted by x̄i and p̄i , via a non-canonical transformation. For these variables, a Hamiltonian
exists and the usual formalism is applicable. The physical results are finally obtained via the
inverse transformation. In particular, on the canonical level, the Hamilton–Jacobi equation

∂S̄

∂t
+ H̄

(
x̄i ,

∂S̄

∂x̄i

, t

)
= 0 (18)

for the transformed action S̄ and Hamiltonian H̄ is valid. They are connected with the physical
action S and the Hamiltonian H of the corresponding conservative system via [1]

S̄ = S eγ t H̄ = H eγ t (19)

where γ is a constant, the so-called friction coefficient. From the definition of S̄, the canonical
momentum p̄i follows immediately, as

p̄i = ∂S̄

∂x̄i

= eγ t ∂S

∂xi

= eγ tpi (20)

where the position variable remains unchanged, i.e. x̄i = xi . Therefore, the transformation
from the physical variables xi, pi to the canonical variables x̄i , p̄i is non-canonical. The
Hamiltonian H̄ can be expressed in terms of p̄i and attains a form that was proposed by
Caldirola and Kanai [3] for the description of dissipative systems.

To obtain H̄ for the motion in a constant magnetic field, we first need the Hamiltonian
H of the corresponding conservative problem. In our case, we start from the Lagrangian
of equation (5), knowing that the variables canonically conjugate to the coordinates are the
momenta given by

∂L

∂ẋ1
= p1 = ẋ1 − bx2 = ẋ1 + A1

∂L

∂ẋ2
= p2 = ẋ2 + bx1 = ẋ2 + A2 (21)

from which we have

ẋ1 = p1 + bx2 = p1 − A1 ẋ2 = p2 − bx1 = p2 − A2. (22)

The Hamiltonian is then given by

H = (ẋ1p1 + ẋ2p2) − L(xi, ẋi ) (23)

where L is the Lagrangian of equation (5) and the ẋi are replaced by the pi through
equation (22). Carrying out the replacement indicated, we obtain

H = 1
2 (p − A)2 + V (r). (24)

Using our definitions from above, the dissipative Hamiltonian H̄ can be written as

H̄ = 1
2 e−γ t (p̄ − eγ tA)2 + eγ tV (r) = T̄ + V̄ . (25)
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For reasons that will become obvious later, we will keep the potential term V̄ on the canonical
level—even if in the conservative case no potential V (r) might be present.

So far, the Hamiltonians considered only describe the mechanical aspect of the system
but not yet the contributions from the electric and magnetic fields. These can be taken into
account by

Hfield =
∫

drHfield (26)

with the Hamiltonian density

Hfield = 1

8π
(E2 + B2) (27)

where E is the electric field vector and the total Hamiltonian is given by

Htot = H + Hfield. (28)

From the Lagrangian corresponding to the field contribution, Lfield = ∫
drLfield with

Lfield = 1
8π

(E2 − B2), Maxwell’s equations can be derived [14], where the homogeneous
ones are equivalent to

∂

∂t
A = −E − ∇� B = ∇ × A (29)

with the nabla operator ∇ and the scalar electric potential �.
Transition to the canonical level, including dissipation, should also change, according to

(19), Hfield into H̄field according to

H̄field = eγ tHfield. (30)

On the canonical level, the form of the equations (29) should be unchanged, i.e.

∂

∂t
Ā = −Ē − ∇�̄ B̄ = ∇ × Ā (31)

should be valid. Since, apart from the electric charge e (that is 1 in our units), � can be
identified with the potential V if no external potentials are present, it follows from (25) that

�̄ = V̄ = eγ tV = eγ t�. (32)

Inserting this into the first equation (31), a way to keep equations (31) consistent is,
therefore, to also define Ē = eγ tE, B̄ = eγ tB and Ā = eγ tA. This would imply that
L̄field = 1

8π
eγ t (E2 − B2) = eγ tLfield, which is also in agreement with the Caldirola–Kanai

form [3] for the dissipative Lagrangian of a mechanical system.
H̄field can then be written in a form like T̄ , namely

H̄field = 1

8π
e−γ t (Ē2 + B̄2) (33)

and the mechanical Hamiltonian takes the form

H̄ = 1
2 e−γ t (p̄ − Ā)2 + e�̄. (34)

From this Hamiltonian (and with A = b(−x2, x1)) the canonical equations of motion
follow as

˙̄x1 = ẋ1 = ∂H̄

∂p̄1
= e−γ t (p̄1 − Ā1) = p1 − A1 = p1 + bx2 (35)

or

p̄1 = eγ t (ẋ1 + A1) = eγ t (ẋ1 − bx2) (36)
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˙̄x2 = ẋ2 = ∂H̄

∂p̄2
= e−γ t (p̄2 − Ā2) = p2 − A2 = p2 − bx1 (37)

or

p̄2 = eγ t (ẋ2 + A2) = eγ t (ẋ2 + bx1) (38)

and

˙̄p1 = − ∂H̄

∂x̄1
= (p2 − A2)

∂

∂x1
(Ā2) − ∂

∂x1
�̄ = eγ t

(
bẋ2 − ∂

∂x1
�

)
(39)

˙̄p2 = − ∂H̄

∂x̄2
= (p1 − A1)

∂

∂x2
(Ā1) − ∂

∂x2
�̄ = eγ t

(
−bẋ1 − ∂

∂x2
�

)
. (40)

Comparing (39) and (40) with the time derivatives of (36) and (38), respectively, one finds

ẍ1 − 2bẋ2 + γ ẋ1 + γA1 +
∂

∂x1
� = 0 ẍ2 + 2bẋ1 + γ ẋ2 + γA2 +

∂

∂x2
� = 0 (41)

i.e., equations of motion which contain the above-mentioned unphysical terms proportional to
the vector potential A. However, the transformation of the Hamiltonian field Hfield according
to (30), with the corresponding equations (31), makes it possible to eliminate this problem.

From the first equation (31), it follows (in the absence of an electric field E) that

∇�̄ = eγ t∇� = − ∂

∂t
Ā = − ∂

∂t
(eγ tA). (42)

For a time-independent vector potential A on the physical level, i.e. ∂
∂t

A = 0, it follows
with

∂

∂t
Ā = γ Ā = γ eγ tA (43)

that
∂

∂xi

� = −γAi (44)

and, thus, the last two terms on the lhs of equations (41) cancel.
Note that without dissipation, i.e. γ = 0, the term ∇�̄ and, consequently, ∇� disappears,

i.e. � and, thus, V on the physical level is just a constant (with respect to spatial variables)
and will be chosen to be zero in the following.

So, finally, we obtain the desired equations of motion

ẍ1 − 2bẋ2 + γ ẋ1 = 0 ẍ2 + 2bẋ1 + γ ẋ2 = 0 (45)

where the friction constant γ is a measure of the strength of the dissipative term which, besides,
is isotropic as it has the same value for the directions x1 and x2.

We solve equations (45) by the same procedure that we used for the non-dissipative
problem, i.e. by introducing the circular components x± defined in equation (9), that now
satisfy the equation

d

dt
(ẋ± ± i2bx± + γ x±) = 0 (46)

whose solution is given by

x± = x0± + A± exp[−(±i2b + γ )t] (47)

where, as in the discussion following equation (12), A± = A∗
∓.
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Again, as in equation (13), we can express the differences x± − x0± in terms of polar
coordinates and note that from A± = A∗

∓ we can write them as

A± = 1√
2
r0 e±iδ (48)

with r0 and δ real constants, so we now get
1√
2
r exp(±iϕ) = 1√

2
[r0 exp(−γ t)] exp[±i(−2bt + δ)]. (49)

From equation (49) it follows that

r2 = r2
0 exp(−2γ t) (50)

ϕ = −2bt + δ (51)

so the angular velocity ϕ̇ = −2b remains the same as for the non-dissipative problem but now
the square of the radius is time dependent. From equation (51) we can express the time t in
terms of ϕ and thus get for the square of the radius the expression

r2 = r2
0 exp[(γ /b)(ϕ − δ)] (52)

which is an equation for a spiral.
We wish now to discuss the energy in this problem which we can do starting from the

equations of motion in equation (45).
We multiply the first of the latter by ẋ1 and the second by ẋ2 and add them to obtain

d

dt

[
1

2

(
ẋ2

1 + ẋ2
2

)]
+ γ

(
ẋ2

1 + ẋ2
2

) = 0. (53)

The energy is then given by

E = 1
2

(
ẋ2

1 + ẋ2
2

)
(54)

and satisfies the equation

dE

dt
+ 2γE = 0 (55)

from which it follows that

E = E0 exp(−2γ t). (56)

Comparing equations (56) and (50) we see that they have the same behaviour as functions
of time and should be related. In fact we can find this relation by noting that from equation (9)

ẋ2
1 + ẋ2

2 = 2ẋ+ẋ− (57)

and from equation (49)

ẋ± = 1√
2
(∓2bi − γ )r0 exp(−γ t) exp[±i(−2bt + δ)] (58)

so the energy is now given by

E = 1
2 (4b2 + γ 2)r2

0 exp(−2γ t) (59)

and comparing with equation (56) we obtain

E0 =
(

2b2 +
γ 2

2

)
r2

0 . (60)

The energy, in the presence of dissipative forces, is not conserved and in fact it decays
with time. If the dissipative effect is small compared to the cyclotron energy, i.e. if

γ 2 � 4b2 (61)

then we have as in equation (17) the relation obtained previously, r2
0 = E0/2b2.
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4. The quantum-mechanical problem without dissipation

To obtain the quantum-mechanical equations, we take the Hamiltonian (24) (with V = 0, as
mentioned above), using the definition (2) of A (in our units) and writing it in components as

H = 1
2

[(
p2

1 + p2
2

)
+ b2

(
x2

1 + x2
2

)]
+ b[−(x1p2 − x2p1)]. (62)

The corresponding operator is obtained by usual canonical quantization, substituting pi

by −i ∂
∂xi

.
We would like to solve this problem in such a way that the eigenstates are related in a

simple manner to the behaviour we observed in the classical discussion in section 2.
For this purpose we express the Hamiltonian operator in terms of the creation and

annihilation operators

ηi = 1√
2

(√
bxi − i√

b
pi

)
ξi = 1√

2

(√
bxi +

i√
b
pi

)
(63)

and find that the Hamiltonian can be expressed as

H = b[(η1ξ1 + η2ξ2 + 1) − (1/i)(η1ξ2 − η2ξ1)]. (64)

We then pass to what we could call the circular creation and annihilation operators defined
by

η± = 1√
2
(η1 ± iη2) ξ± = 1√

2
(ξ1 ∓ iξ2) (65)

and in terms of them the Hamiltonian takes the form

H = b[(η+ξ+ + η−ξ− + 1) − (η+ξ+ − η−ξ−)] = b(2η−ξ− + 1). (66)

The creation and annihilation operators of equation (63) clearly satisfy the commutation
relations

[ηi, ηj ] = [ξi, ξj ] = 0 [ξi, ηj ] = δij i, j = 1, 2 (67)

and similar relations hold for η±, ξ±.
Using now the circular coordinates

x± = 1√
2
(x1 ± ix2) (68)

we conclude from equations (63), (65) and (68) that η±, ξ± have the differential form

η± = 1√
2

(√
bx± − 1√

b

∂

∂x∓

)
ξ± = 1√

2

(√
bx∓ +

1√
b

∂

∂x±

)
. (69)

The Hamiltonian b(2η−ξ− + 1) of equation (66) does not contain η+, ξ+, so we are
completely free in the ways we can characterize the eigenstates of H in relation to these last
operators. In this section we shall consider eigenstates of both (2η−ξ− + 1) and ξ+. Since
the latter is a non-Hermitian operator [15] we shall designate its eigenvalue by the complex
number z0 whose real and imaginary parts, for later convenience, we denote by

√
bx01 and√

bx02 respectively, i.e.

z0 =
√

b(x01 + ix02). (70)

Since [ξ−, η−] = 1, η−ξ− is a number operator and we shall designate its eigenvalues by
ν = 0, 1, 2, . . . . We are thus looking for kets |ν, z0〉 satisfying

(2η−ξ− + 1)|ν, z0〉 = (2ν + 1)|ν, z0〉 (71)

ξ+|ν, z0〉 = z0|ν, z0〉 (72)
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which we shall call coherent states [16] since those are precisely characterized by
equation (72).

To obtain |ν, z0〉 we start [17]3 with a ground state |0〉 obeying

ξ±|0〉 = 0 (73)

which from equation (69) takes the form

|0〉 =
(

b

π

)1/2

exp[−bx+x−] =
(

b

π

)1/2

exp
[−(b/2)

(
x2

1 + x2
2

)]
. (74)

From the commutation relations (67), which hold even if i, j = +,−, we see that to obtain
the eigenvalue ν for η−ξ− we need to apply ην

− to |0〉, while to obtain the eigenvalue z0 for ξ+

we need to apply exp(z0η+) to |0〉. Thus the normalized coherent state |νz0〉 is given by [17]

|ν, z0〉 =
[
(ν!)−

1
2 ην

−
]

exp(−1/2|z0|2) exp(z0η+)|0〉 (75)

where |z0|2 = b
(
x2

01 + x2
02

)
and exp(z0η+) should be understood as the exponential series in

powers of z0η+.
From equations (69) and (74) we see that

η+|0〉 =
√

2bx+|0〉 (76)

and thus in equation (75) we can replace η+ by
√

2b x+ to obtain

|ν, z0〉 =
√

b(πν!)−
1
2 exp

[− 1
2b

(
x2

01 + x2
2

)]
ην

− exp[(
√

2z0 −
√

bx−)
√

bx+]. (77)

Finally, applying ν times η− we obtain [17]

|ν, z0〉 = b
1
2 (πν!)−

1
2 b

ν
2 [(x1 − x01) + i(x2 − x02)]ν

× exp{−(b/2)[(x1 − x01)
2 + (x2 − x02)

2]} exp[ib(x02x1 − x01x2)]. (78)

This state is normalized and besides we obtain [17]

〈ν, z0|xi|ν, z0〉 = x0i i = 1, 2 (79)

〈ν, z0|(x1 − x01)
2 + (x2 − x02)

2|ν, z0〉 = b−1(ν + 1) = [b(ν + 1)/b2]. (80)

Relation (79) is obtained by noting that xi − x0i changes sign when we make a reflection
xi −x0i → −(xi −x0i) while all the other terms in equation (79) are invariant under reflection.
Thus the expectation value of xi − x0i with respect to the states |ν, z0〉 is 0 from which it
follows that the expectation value of xi is x0i . Thus the coherent eigenstate |ν, z0〉 of the
Hamiltonian H is centred at the point (x01, x02).

To understand the result in equation (80) we note that the probability density for states
|ν, z0〉 is given by

|〈x1, x2|ν, z0〉|2 = b(πν!)−1ρ2ν exp(−ρ2) (81)

where

ρ2 ≡ b[(x1 − x01)
2 + (x2 − x02)

2] (82)

and it is normalized as∫ ∞

−∞

∫ ∞

−∞
|〈x1x2|νz0〉|2 dx1 dx2 = 1

ν!

∫ ∞

0
(ρ2)ν exp(−ρ2) dρ2 = 1 (83)

where the element dx1 dx2 in polar coordinates becomes b−1ρ dρ d ϕ which cancels the factor
b in equation (81), and where an integration over ϕ gives 2π .
3 Note that in this reference b is taken as negative so that η+ replaces the operator η− of the present paper but all the
conclusions remain valid.
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Taking into account that the expectation value of ρ2 changes only (ρ2)ν to (ρ2)ν+1 in
equation (83) we obtain (ν + 1) for its value and from equation (82) this justifies the result of
equation (80).

We note from equation (66) that the quantum-mechanical energy, which for a non-
dissipative problem we shall denote by E0, is given by

E0 = b(2ν + 1) (84)

and thus when ν � 1, equation (80) agrees with the classical value of the square of the radius
given by E0/2b2 in equation (17).

To understand more fully what the coherent state wavefunction |ν, z0〉 implies we note
from equation (81) that the maximum of the probability density occurs at ρ2 = ν and there it
takes the value

|〈x1, x2|ν, z0〉|2max = b(πν!)−1νν e−ν 
 bπ−1(2πν)−
1
2 (85)

in which the right-hand side is valid for large ν when we use Stirling’s formula.
In the classical limit, i.e. when ν � 1, we have from equation (80) that the probability

density is concentrated in a ring of radius (ν/b)
1
2 and width � where the latter can be estimated

by considering that the product of
(
2π(ν/b)

1
2 �

)
with the maximum height of equation (85) of

the probability density should give 1, since the wavefunction |ν, z0〉 is normalized. For ν � 1
we thus have (

2πν
1
2 b− 1

2 �
) (

π−1(2πν)−
1
2 b

)
= (2/π)

1
2 b

1
2 � 
 1. (86)

Thus the value of � = (π/2)
1
2 b− 1

2 and becomes very small for large values of the
cyclotron frequency in atomic units.

Thus the coherent wavefunctions represent the states associated with the classical circular
orbits of a definite energy in a constant magnetic field. Besides the relation between the square
of the radius of the orbit and the ratio of half the energy with the square of the angular velocity
is still valid in this quantum system as seen in equation (80).

5. The quantum-mechanical problem with dissipation

For comparison with the results of the previous section, we write the canonical Hamiltonian
H̄ , also in components, in terms of x̄i = xi and p̄i (without considering the potential V̄ that
is related to the explicit time-dependence of the vector potential Ā, this has to be taken into
account in the time-dependent treatment of the problem).

The classical Hamiltonian

H̄ = 1
2

[
e−γ t

(
p̄2

1 + p̄2
2

)
+ b2 eγ t

(
x2

1 + x2
2

)]
+ b[−(x1p̄2 − x2p̄1)] (87)

can be quantized straightforwardly, now replacing the canonical momentum p̄i by −i ∂
∂xi

.
Again, the Hamiltonian can be expressed in terms of operators such as the creation and

annihilation operators ηi and ξi , now defined as

η̄i = 1√
2

(√
b eγ t/2xi − i√

b
e−γ t/2p̄i

)
= 1√

2

(√
b eγ t/2xi − 1√

b
e−γ t/2 ∂

∂xi

)

ξ̄i = 1√
2

(√
b eγ t/2xi +

i√
b

e−γ t/2p̄i

)
= 1√

2

(√
b eγ t/2xi +

1√
b

e−γ t/2 ∂

∂xi

) (88)

yielding

H̄ = b[(η̄1ξ̄1 + η̄2ξ̄2 + 1) − (1/i)(η̄1ξ̄2 − η̄2ξ̄1)]. (89)
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Changing again to the corresponding circular operators, defined in analogy with η± and ξ±,
finally leads to

H̄ = b[(η̄+ξ̄+ + η̄−ξ̄− + 1) − (η̄+ξ̄+ − η̄−ξ̄−)] = b(2η̄−ξ̄− + 1) (90)

i.e. the same form as in equation (66), only with barred quantities. The ground state |0̄〉 can
now be obtained from

ξ̄±|0̄〉 = 1√
2

(√
b eγ t/2x∓ +

1√
b

e−γ t/2 ∂

∂x±

)
|0̄〉 = 0 (91)

and takes the normalized form

|0̄〉 =
(

b eγ t

π

)1/2

exp[−b eγ t x+x−] =
(

b eγ t

π

)1/2

exp
[−(b/2) eγ t

(
x2

1 + x2
2

)]
. (92)

Due to the formal similarity between η̄i , ξ̄i and the corresponding quantities without bar,
the construction of coherent states with higher ν should follow the same scheme as in the case
without dissipation, except that now an exponential factor occurs, in particular in the exponent
of the coherent states.

At this point, the relation between the action and the wavefunction, introduced by
Schrödinger in his first paper on wave mechanics [18],

S = −i ln |�〉 (93)

shall be used to make the link between the coherent states on the canonical level and their
dissipative counterparts on the physical level, as shown in our previous work [1].

According to equation (19), the physical and the canonical actions are related by
S = e−γ t S̄, so the corresponding wavefunctions and, thus, also the coherent states are
connected via the non-unitary transformation

ln |�〉 = e−γ t ln |�̄〉. (94)

It becomes obvious that the factor eγ t in the exponent of the canonical coherent states is
compensated by the factor e−γ t on the rhs of (94). From this one can conclude that on the
physical level, also in the dissipative case, the maximum of the probability density should
occur where the classical value of the radius lies.

We can, therefore, make use of our classical results to get information about the quantum
problem with dissipation. We showed, classically, that the energy E for the dissipative problem
is the non-dissipative one, E0, multiplied by the decay-term exp(−2γ t). As this energy (59)
is related to the mean square radius (50) by a formula that holds both classically, in equations
(17) and (60), and quantum mechanically, in equation (80), we see that when the energy decays
the same will happen to the mean square radius. Thus, our quantum-mechanical ring given by
the probability density of equation (81) should collapse to the region around the central point,
according to the decay formula exp(−2γ t).

To prove this dynamical behaviour of the maximum of the probability density we
consider, in the next section, the time-dependent case (without and with dissipation) and
use superpositions of the coherent states to form Gaussian wave packets that are solutions of
the corresponding time-dependent Schrödinger equation.

6. The time-dependent quantum-mechanical problem with and without dissipation

Since the coherent states do not show the dynamical behaviour directly and also the
normalization of the dissipative coherent states |ν̄, z̄0〉 containing the νth power of the radius
of the circular motion should not be trivial after the non-unitary transformation (94), it
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seems advantageous to construct time-dependent Gaussian wave packets by a superposition
of coherent states with the appropriate coefficients.

In the conservative case, these wave packets |�(t)〉 should fulfil the time-dependent
Schrödinger equation

i
∂

∂t
|�(t)〉 = H |�(t)〉 (95)

with the Hamiltonian operator H corresponding to the Hamiltonian in equation (62). The wave
packet can be expanded in terms of the coherent states |ν, z0〉,

|�(t)〉 = e−ibt

∞∑
ν=0

Aν|ν, z0〉 e−i2νbt (96)

with time-independent coefficients Aν , in particular at t = 0:

|�(0)〉 =
∞∑

ν=0

Aν |ν, z0〉. (97)

Assume that the initial state is a Gaussian wave packet given by

|�(0)〉 =
(

b

π

)1/2

exp

{
−b

2
(r − 〈r〉(0))2 + i[(〈ṙ〉(0) + A(〈r〉(0)))(r − 〈r〉(0))]

}

=
(

b

π

)1/2

exp

{
−b

2
(R − a0)

2 + i[(〈ṙ〉(0) + A(〈r〉(0)))(R − a0)]

}
(98)

with a0 = a(t = 0). Using the orthonormality of the |ν, z0〉, the Aν can be determined [19]
and, choosing appropriate initial conditions, one gets the simple form [20]

Aν =
(

bν 1

ν!

)1/2

|a0|ν exp

{
−b

2
a2

0 − iA(r0) · a0

}
(99)

where the coefficients Aν fulfil the completeness relation
∑∞

ν=0 AνA
∗
ν = 1. The meaning of

the radial quantities R and a becomes obvious from figure 1.
The normalized time-dependent wave packet can be written as

|�(t)〉 =
(

b

π

)1/2

exp

{
−b

2
(R − a(t))2 + i[〈p〉(t)(R − a(t)) + K(t)]

}
(100)

with the classical momentum 〈p〉 = 〈ṙ〉 + A(〈r〉) and a purely time-dependent term K(t) that
is not relevant for the following.

The corresponding density is given by

|�(t)|2 = b

π
exp{−b(R − a(t))2} (101)

i.e. the maximum follows the classical circular trajectory a(t) = 〈r〉(t) − r0.
Including dissipation, a similar Gaussian wave packet can be found, fulfilling the equation

i
∂

∂t
|�̄(t)〉 = H̄ |�̄(t)〉 (102)

with the Caldirola–Kanai Hamiltonian H̄ = T̄ + V̄ .
To be in agreement with the transformed classical equations for the scalar and vector

potentials (see section 3), the potential V̄ has to fulfil

− ∂

∂xi

V̄ = −eγ t ∂

∂xi

V = γ Āi = γ eγ tAi. (103)
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x2

x1

Figure 1. r: vector of position in the (x1, x2) plane; 〈r〉: classical trajectory; r0: centre of circular
motion; R = r − r0 with |R| = radius of circular motion; a = 〈r〉 − r0 with |a| = classical radius.

So, the potential V̄ on the canonical level can be given (up to a possible purely time-
dependent additive term) as

V̄ = γ b(〈x2〉x1 − 〈x1〉x2) eγ t = −γ A(〈r〉)r eγ t . (104)

This leads to the time-dependent Gaussian wave packet

|�̄(t)〉 = N̄ exp

{
− (b̄ + iγ /2)

2
(R − a(t))2 eγ t + i[〈p̄〉(t)(R − a(t)) + K̄(t)]

}

= N̄ exp

{
eγ t

[
− (b̄ + iγ /2)

2
(R − a(t))2 + i[〈p〉(t)(R − a(t)) + e−γ t K̄(t)]

]}
(105)

with 〈p̄〉 = eγ t 〈p〉 (where 〈p〉 is the classical dissipative momentum), a(t) follows the classical
dissipative trajectory, i.e. it spirals to r0, b̄ = (b2 − γ 2/4)1/2 and N̄ = (b̄ eγ t /π)1/2 is the
normalization coefficient on the canonical level.

As in the conservative case, this wave packet can also be built up by a superposition of
coherent states, in this dissipative case, by the ones obtained in section 5.

The corresponding density is given by

|�̄(t)|2 = N̄N̄∗ exp{eγ t [−b̄(R − a(t))2]}. (106)

The wave packet and density on the physical level can be found again using our relation
between the actions on the different levels and between the action and the wave packet (see
equations (19), (93), (94)). So, from ln |�〉 = e−γ t ln |�̄〉, we get rid of the factor eγ t in the
exponent and find for the physical wave packet including dissipation

|�diss(t)〉 ∝ exp

{
− (b̄ + iγ /2)

2
(R − a(t))2 + i[〈p〉(t)(R − a(t)) + e−γ t K̄(t)]

}
. (107)

Usual normalization of the Gaussian then yields the density

|�diss(t)|2 = b̄

π
exp{−b̄(R − a(t))2} (108)
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i.e. the maximum of the physical probability density spirals according to the classical
dissipative trajectory a(t) towards the origin r0, as already expected from the discussion
of the dissipative coherent states at the end of section 5.

7. Conclusions

A classical charged particle moves in a constant magnetic field on a circle with constant
radius r0, where the radius is connected with the energy E0 via r2

0 = E0/2b2. The
quantum-mechanical situation can be described by coherent states, where the maximum of
the corresponding probability density is concentrated in a ring of radius 
 = √

ν. For large
quantum numbers, ν � 1, the same relation between the radius and the energy of the system
is valid, as in the classical case.

If dissipation is included, the classical particle moves on a spiral with exponentially
decaying radius. The energy shows the same decaying behaviour and the relation between the
square of the radius and the energy is given by a constant as in the conservative case.

Quantum mechanically, a canonical description of the dissipative system is possible in
terms of modified creation and annihilation operators, allowing one to obtain similar coherent
states as without dissipation. A non-unitary transformation to the physical states shows that,
also here, the maximum of the probability density occurs at the classical radius. Using the
aforementioned relation between the radius and the energy, it can be concluded that with
decaying energy, also the radius will exponentially approach the centre of the circle, i.e. states
with smaller quantum numbers will be gaining higher probability.

This statement can be proved by considering the time-dependent quantum-mechanical
problem. In this case, Gaussian wave packet solutions can be obtained by superimposing
the corresponding coherent state solutions. In the conservative case, the maximum of the
wave packet moves on a circle with the constant classical radius |a|; in the dissipative case,
the maximum spirals along the classical trajectory with exponentially decaying radius |a(t)|
towards the centre r0.
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